南京航空航天大学k8凯发集团主页平台管理系统 皮德常-k8凯发集团

扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 皮德常 ( 教授 )

    的个人k8凯发集团主页 http://faculty.nuaa.edu.cn/pdc/zh_cn/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    网络空间安全 -- 【招收硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文k8凯发集团主页 >> 科学研究 >> 论文成果
forecasting satellite power system parameter interval based on relevance vector machine with modified particle swarm optimization

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:iaeng int. j. comput. sci.
摘要:power system is an essential system in satellite, which ensures the security and stability of energy in the whole satellite system. this paper presents a mixed relevance vector machine with modified particle swarm optimization (mpso-rvm) algorithm to forecast parameters intervals of satellite power system involved the main bus load current and the main bus voltage. first, rvm with radial basis kernel function is established to solve the regression problems of the data in satellite power system. next, modified pso algorithm is utilized to find out the optimal parameters of rvm to enhance the generalization capability. in addition, the self-adaptive parameter setting mechanisms is conceived to avoid the mpso algorithm trapping into the local optima. moreover, mpso-rvm model can obtain desirable prediction intervals rather than prediction values. experimental results demonstrate that mpso-rvm model can achieve better prediction accuracy, sparser solution and shorter test-time than rvm model and pso-svr model. meanwhile, the majority of samples are located into the prediction interval obtained at higher confidence level. therefore, the proposed mpso-rvm model vividly depicts the variation tendency of parameters in satellite power system, which is conducive to adopt available measures for avoiding satellite accidents and faults initiatively.
issn号:1819-656x
是否译文:否
发表时间:2017-01-01
合写作者:康旭
通讯作者:皮德常

 

k8凯发集团的版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)
网站地图